10th class Math Unit 2 MCQs
Chapter 2 MCQs 10th Class Math
Theory of Quadratic Equations:
1. If β,a are the roots of 3×2+5x−2 = 0 , then α +β is:
a. 3/5
b. 5/3
c. −2/3
d. 3/5
2. If β,α are the roots of 7×2−x+4 = 0, then α,β is:
a. 7/4
b. −1/7
c. −4/7
d. 4/7
3. Roots of the equation 4×2−5x+2=0 are:
a. Rational
b. Irrational
c. Imaginary
d. None of these
4. Cube roots of “-1”:
a. −1,−ω,ω2
b. −1,−ω,−ω2
c. 1,−ω,−ω2
d. −1,ω,−ω2
5. Sum of the cube roots of unity is:
a. -1
b. 0
c. 3
d. 1
6. Product of cube roots of unity is:
a. -1
b. 0
c. 3
d. 1
7. If b2−4a c < 0, then the roots of a x2+bx+c = 0 are:
a. Imaginary
b. Irrational
c. Rational
d. None of these
8. If b2−4a c > 0 , then the roots of a x2+bx+ = 0 are:
a. Irrational
b. Imaginary
c. Rational
d. None of these
9. 1/a + 1/b is equal to:
a. α −β/αβ
b. 1/α
c. α +β/αβ
d. 1/α −1/β
10. α2+β2 is equal to:
a. (α +β)−2αβ
b. α2−β2
c. α +β
d. 1/α2 + 1/β2
11. Two squares roots of unity are:
a. 1,-w
b. 1,-1
c. w,w2
d. 1,w
12. Roots of the equation 4×2−4x+1 = 0 are:
a. Imaginary
b. Real, equal
c. Irrational
d. Real, unequal
13. If β,α are the roots of px2+qx+r = 0, then sum of the roots 2α and 2β is:
a. −2q/p
b. −q/p
c. − q/2p
d. r/p
14. If α,β are the roots of x2−x−1 = 0, then product of roots 2α ,2β is:
a. 4
b. -2
c. -4
d. 4
15. The nature of the roots of the equation a x2+bx+c = 0 is determined by:
a. Synthetic division
b. Sum of the roots
c. Discriminant
d. Product of the roots
16. The discriminant of a x2+bx+c = 0is:
a. -b2 -4ac
b. b2 -4ac
c. -b2 -4ac
d. b2 +4ac
17. Roots of following equation are 9×2 − 4x + 1 = 0:
a. Imaginary
b. Real, equal
c. Irrational
d. Real, unequal
18. Sum of roots of 4×2 − 3x + 6 = 0:
a. 4/3
b. 3/4
c. – 4/3
d. – 3/4
19. Product of roots of equation 5x2 + 3x − 9 = 0:
a. 3/5
b. -9/5
c. -3/5
d. 9/5
20. The product of the root of the equation 5x2+3x−9 = 0is:
a. 3/5
b. − 9/5
c. − 3/5
d. 9/5
21. Discriminant of the x2−3x+3 = 0 is:
a. -3
b. -4
c. 2
d. 4
22. Two square roots of unity are:
a. 1,w2
b. 1, _ 1
c. 0 , 1
d. 1 , w
23. 1/ω7 = ?
a. 1/(ω3)2.ω
b. 1/(ω5)2.ω2
c. 1/(ω3)5.ω
d. 1/(ω2)3.ω
24. 1+ω+ω2 = ?
a. 1
b. 4
c. 0
d. 3
25. Reduced form of ω5 is:
a. ω
b. ω5
c. ω−2
d. ω2
26. A quadratic equation has:
a. Four roots
b. Two roots
c. Five roots
d. Three roots
27. If 2ω and 2ω2 are the roots of an equation, then equation is:
a. x2+x+4 = 0
b. x2+2x+4 = 0
c. x2+x+6 = 0
d. x2 + x + 4 = 0
28. If 3(1/3)+m = 0 then m will be equal to:
a. 1/3
b. 1
c. 3
d. -1
29. If ω = 1/ω2 then ω2 is equal to:
a. 1/ω
b. ω
c. ω3
d. 1
30. ω3 is equal to:
a. 1
b. ω
c. -1
d. ω4
31. Reduced form of ω6 is equal to:
a. ω3
b. 1
c. 0
d. ω6
32. If 6l−2 = 0 then l is equal to:
a. 1/6
b. 1/3
c. 2/6
d. 2/3
33. If α,β are the roots of equation then αβ is equal to:
a. −a/b
b. c/a
c. −c/a
d. −b/a
34. Sum of roots is equal to:
a. α −β
b. αβ
c. a/b
d. α +β
35. The nature of the roots of equation ax +bx+c=0 is determine by:
a. Product of the roots
b. Discriminant
c. Synthetic division
d. Sum of the roots
36. 1+ω = ?
a. 1
b. −ω2
c. ω
d. -2
37. Roots of the equation 9×2−4x+1 = 0 are:
a. Imaginary
b. Real
c. Irrational
d. Rational
38. The sum of the roots of the equation 4×2−3x+6 = 0 is:
a. 4/3
b. 3/4
c. − 4/3
d. − 3/4
39. If α,β are the roots of x2−x−1 = 0 then (2α) (2β) is equal to:
a. 4
b. -2
c. -4
d. 2
click here to go directly on chapter no.3