Chemistry Chapter 14 Entry Test MCQs

a. Amide group
b. Imino group
c. Nitro group
d. Amino group

d. Amino group

a. The presence of Hydrogen
b. The presence of Oxygen
c. The presence of excessive Oxygen
d. The absence of Oxygen

d. The absence of Oxygen

a. Vapour density method
b. Specific gravity method
c. Distillation methods
d. X-ray diffraction method

a. Vapour density method

a. Organo-nickel
b. Cr2O3 + Al2O3 + SiO2
c. Ni 250 – 300°C
d. Raney nickel

a. Organo-nickel

a. Resonance energy of benzene is 150.5 KCal/mole
b. On hydrogenation 208 KJ/mole is liberated
c. C-H bond length in benzene is 1.09 A°
d. The molecular mass of benzene is 78.108amu

a. Resonance energy of benzene is 150.5 KCal/mole

a. Friedel & Craft acylation
b. Dows process
c. Clemmenson reduction
d. Friedel & Craft alkylation

d. Friedel & Craft alkylation

a. C6H5O9
b. C6H6O9
c. C6H6O6
d. C6H5O8

b. C6H6O9

a. cumene
b. n-Propylbenzene
c. Isopropylbenzene
d. both b and c

c. Isopropylbenzene

a. In benzene, carbon uses all the three p orbitals for hybridization.
b. Although benzene contains three double bonds, normally it does not undergo addition reaction
c. An e donating substitutent in benzene orients the incoming electrophilic group to m-position.
d. m-chlorobromobenzene is an isomer of m-bromochlorobenzene.

b. Although benzene contains three double bonds, normally it does not undergo addition reaction

a. propylbenzene
b. ethyl benzene
c. p-Xylene
d. methylbenzene

b. ethyl benzene

a. Reducing agent
b. Base
c. Catalyst
d. Acid

. Base

a. Two structures make equal contribution to resonance hybrid
b. Half of the molecules correspond to one structure, and half of the second structure
c. An individual benzene molecule changes back and forth between two structures
d. At low temperatures benzene can be separated into two structures

a. Two structures make equal contribution to resonance hybrid

a. Nitrobenzene
b. Benzene
c. chlorobenzene
d. Toluene

d. Toluene

a. II > III > IV > I
b. I > II > III > IV
c. III > I > II > IV
d. I > III > II > IV

d. I > III > II > IV

a. o-dibromobenzene
b. m-dibromobenzene
c. p-dibromobenzene
d. Both A & B

b. m-dibromobenzene

a. Ethyl benzoate
b. Ethoxy benzene
c. Phenol
d. Chlorobenzene

a. Ethyl benzoate

a. 1) HNO3/H2SO4, 2) CH3CH2CH2Cl/AlCl3
b. 1) CH3CH2CH2Cl/AlCl3, 2) HNO3/H2SO4
c. 1) CH3CH2COCl/AlCl3, 2) HNO3/H2SO4, 3) H2NNH2/NaOH
d. 1) HNO3/H2SO4, 2) CH3CH2COCl/AlCl3, 3) H2NNH2/NaOH

a. 1) HNO3/H2SO4, 2) CH3CH2CH2Cl/AlCl3

a. All of the mentioned
b. Generation of electrophile
c. Attack by an electrophilic reagent on benzene ring
d. Formation of product

c. Attack by an electrophilic reagent on benzene ring

a. Nitronium ion
b. Halogenonium ion
c. Acylium ion
d. Sulphonium ion

b. Halogenonium ion

a. Carbanion
b. Nitronium ion
c. Ammonium ion
d. Carbonium ion

a. Carbanion

a. O-xylene
b. Toulene
c. Isopropyl benzene
d. P-xylene

c. Isopropyl benzene

a. Alkylbenzene
b. Arylketone
c. Halobenzene
d. Alkylamine

b. Arylketone

a. Friedel-Crafts Alkylation
b. Friedel-Crafts Acylation followed by clemmensen reduction
c. Friedel-Crafts Acylation
d. Friedel-Crafts Alkylation followed by clemmensen reduction

b. Friedel-Crafts Acylation followed by clemmensen reduction

a. Electrophile
b. Hydride ion
c. Electrons
d. Proton

d. Proton

a. COCH3,CONR2,NH2
b. Cl, NH2, CH3
c. OCOCH3,OH, CN
d. CN, SO3H,CHO

d. CN, SO3H,CHO

a. bromobenzene
b. isopropyl chloride
c. chloroethene
d. Chlorobenzene

b. isopropyl chloride

a. Equal
b. Low
c. Can’t predicted
d. High

b. Low

a. 208 kJ-mol−1
b. 358.5 kJ/mole
c. 150.5 kJ-mol−1
d. 119 kJ-mol−1

a. 208 kJ-mol−1

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *